Tapik 2. Values of k and corresponding values of r

k l r \ k r k r 4 r
3 1 56 1 100 2 166 2
4 1 56 1 111 1 167 1
5 2 ne* 2 113 2 148 2
7 1 57 2 115 4 168* 2
-3 2 58 1 116 1 172 2
B* 1 60 2 118 1 177 2

11 1 61 2 120 1 179 2
12 2 65 2 13+ 2 181 2
13 2 68 1 124 2 183 1
15 1 6% 2 127 2 184 2
17 2 71 1 128 2 184* 2
19 2 73 2 131 1 185 2
0 1 6 2 132 1 101 1
21 2 7 7 133 2 193 2
23 1 il 1 136 2 105 2
24 1 83 b3 135* 1 159 1
24 2 54 i 137 2 201 2
28 2 B85 2 13% 2 203 2
20 2 87 1 140 2 oM 2
31 1 RR* 2 m 2 05 2
33 2 80 2 143 1 208 2
35 1 . 3 145 2 a1 3
37 2 o2 2 140 2 212 1
39 1 o3 2 151 1 a3 ]
40 2 85 1 152 1 ny 1
40* 1 a7 2 152+ '] 27 3
41 2 101 2 168 2 219 2
44 2 103 1 156 2 220 2
47 1 164 2 147 2 a 2
51 2 104* 1 159 1 an 2
52 2 105 2 161 2 227 2
53 3 7 2 164 1

TaBiE 3. TValues of & and corresponding combinations and
values of r
k Combination r

43 | (142-9(143~) L{s,x)

67 | (1420} (1+3"') (1454 L{a,20

143 L8, x

l+2";(1+'i";L(s x)

148 | (1481463 (1F7 ) Els.0)
1+2-')§1+3")(1 45} Lis,x)

187 El+zH) 1439 (159 L (3,0

143~ L2, x)

197 | (49 Lin,x)

b3 £ G e G0 b M R b
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Forced Oscillations in Nonlinear Systems'
By Mary L. Cartwright

This paper shows how the approximate form of the golutions of a certain nonlinear
differential equation cccurring in radio work may be obtained from certain general results

and gives the proof of the general results in detail.

The proof of the general statement

depends on a type of method that ean be applied with minor modifications to any equation

£k F(2) d+g(x)=kp{D),

of the type

where p(t) has period 2=z/), and J: p(t)di is bounded for all ¢, f{z) =1 for |z| >4, and

gl{x)fz> 1 for |z|>a.

For some years Professor J. E. Littlewood and I
have been working on nonlinear diflerential equa-
tions ? of a2 type which ocecur in radio work and

elsewhere. One of the most interesting of thess
equations is
d=k(1—aYi+2—bk) cos (M+-a), (1)

especially for I large and 0<76<72/3. Our attention
was drawn to it by a remark of van der Pol,? which

1 Thiz paper contains materlal presented in lecture form to the staft of the
Ingtitizte for Numerical Analysis of the Nationsl Burean of 8tandards on Tanusry
28, 148, Miss Cartwright was s eonsultant at the IN A at the time this leeturs
wag delivered.

2 Bep M. L. Cartwright s.ncl I. E, Littlewood, J. London Math. Soc. 20, 180~
189 (1045}, and Ann. Math. 48, 472484 (1047} also M. L. Cartwright, J, Inst.
f‘l;e:%l‘.ﬁg (}ladlo Sectilm) 2% (III), 88-96 (1948, and Proc. Cambridge Phil. Sec.

t B, van der Pol, Proe. Inst, Radio Eng, 22, 1051-1086 {1534).

suggested that it corresponded to & physical system
investigated by him and van der Mark.! For
certain values of the parameters the physical system
had two possible stable oscillations, one of period
4nwfx and one of period (2n+1)2x/A. As a matter
of fact in the case of (1), owing to the strictly
symmetrical nonlinear function 1—x%, the period
4nx /X does not occur, but for certain values of b there
are two stable oscillations of periods Zn £+ 1)2x/\.

It would take too long to give & complete proof
of this statement here, but I propose to show how
the approximate form of the solutions may be
obtained from certain very general results, and give
the proof of the general results in detail. The proof

1 B, van der Pol and J. van der Mark, Nature 120, 353-364 (1927

’
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of the general statement depends on the type of
-method which we use throughout. It can be
applied with minor modifications to any equation
of the form

F-+k f(x)6+ g(x)=kp(t), 2)

t
where p{f) has period 2x/), and f p(f)dt iz bounded
1]

for all ¢, f(x}>1 for |x|>a, and g(x)/x>1 for |z|>a,
provided of course that ¥, g, » satisfy the usual con-
ditions required for the existence and uniqueness of
solutions, and are either independent of k or satisfy
certain simpls inequalities independent of k.

We assume throughout that %2>1, and usually
that it is large. We first observe that the « in (1)
is merely inserted for convenience. It enables us to
choose the origin of t as we wish. We shall write
Z,,%, for the values of 2 and £ at {=0.

There are two main weapons of attack besides the
equation (1) itself. The first is the integrated equation

-¢—¢D+k(%s—:c—%g+ :c.,)—i—J: xdt
=bk [sin (A4} a)—sin of; (3)

the second is the energy equaiion which is obtained
by multiplying (1) by 2& and integrating,

P 42k f’ (e )it 40—
4]

_ 2Bk L' £ cos (\+a)dl. @)

In some ways the integrated equation is more
fundamental than (1), and that 13 why the X\ is
inserted on the righthand side of (1). The energy
?quation may be rewritten with =y, £,—=%, in the
orm

ety — (24 y2)

{
=2k{f BNE cos ()\t+a)—(:r:’~l)x‘”}dt. @
1]
The righthand side of (4’) will be dominated by the
term z%i® when # is large unless 4 is then very small,
and it seems improbable that £ can be small for
most of the time that z is large. This suggests that
2?1y decreases rapidly over any arc for which z 1s
large, and therefore that ¢ is bounded for sufficiently
large ¢. The general result which I propose te prove
later is the following: -

Theorem 1: If x=x(t, ., &, 18 any solution of (1)
Jor which x=z,, i=1, when t=0, then

|2|<B,|¢|< Bk, ®)

where B s a constant independent of k and &, fork>1,
o8, (%o, o).

Assuming for the moment the result of theorem 1,
wo may argue as follows: eq 3 can he rearranged in
the form
x? . z 1
'g'— z="H SIIt ()\t—l—a)-!-O—E-*-E .

where ' is a constant depending on z,4,b and e,
and i virtue of (5) the last term is O(1/k) for large
values of & and 0<¢{<2x/x. Hence there are two
extreme posgibilities; eifher & is comparable with k
in magnitude, or # is given. approximately by the
equation x=X, where

edt, (3

F(X):"?-X:b sin (M +a)+C. ©)

Both these possibilities may occur for arbitrarily
large values of £, and also of course there are transi-
tions from one to the other. For fixed ¢ and b and
(' such that (—2/3)<b sin (W +a}+C<2/3, eq 6 has
three roots,

X1<— 1<X2< 1 <X3=X3(t, O);

8s may be seen from figure 1. If b>2/3,
b sin (M-+ &)+ ' runs outside the interval [—2/3, 2/3]
for some ¢ in each period: we suppose that 0<b<2/3
because this is the most interesting range. It may
be observed from figure 1 that if X, and X increase
with ¢, X, decreases and vice-versa, so the solutions
over 0<¢<2x/\ are approximately as shown in
figure 2, provided that [#|<B. v

If we integrate over a second period 2#/A <i<4x/
A, we have (3') with € in place of ( where

==L """ sat=0=L """ x.0.00at+0 (L
7= _EJ; zdt= —Eﬁm (Ot (?E")

2THN

§=1,2,3.

Hence if {#] </B, the solution is given approximately
by X,(f,C") over the next period. The difference
("—(C is actually of the same order as #/k, which
occurs In the error term in (37), but it can be shown
that in the circumstances considered # is of the form
0,00+ O0(~%), Putting this and x= X, {({, () + 0k
in (3"}, and remembering that X, and &, are periodie,
we see than the nonperiodic error is

%f: X,¢,0)dt+0 (}1—3)

'
F X

Ficurze 1.
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Figure 2.

and so the second wave will certainly be lower than
the first in the case of X; by an amount of order 1/k,
and the solution will perform descending waves as
shown in figure 3. The second wave will be higher
than the first in the case of X, and higher or lower
for X;, unless

2 /2
_L X.(t,0)dt=0

(so that "= approximately). This can only
occur for =0, and then we have a solution with
period 2x/A approximately. There is in fact a
strictly periodic solution with period 2=/} which is,
for reasons which we shall give presently, unstable.

Returning to the case in which |#] is comparable
with % in magnitude, we suppose first that £>ék,
where §>0 for a time of length D/k. Then  changes
by at least D)5, and this is excluded by (5) if D5 >2B,
Similarly £ is not less than —ék for an interval of
time greater than D/k, for if it is 2 runs outside the
strip | <.B.

As regards the transitions, if Ll—x’]}ﬁ)ﬁ and |&
18 large, the second term in (1) is much more im-
portant than x or b & cos(Mf+a), and so & has
the same sign as % in |2{<{1—35 and the opposite if
|2|> 148, (provided that |£| is large and % is large).
Hence any small but significant deviation from X
or X; i at once corrected, whereas a small but signi-
cant deviation from X, causes |i| to increase rapidly.
In the latter case |#] cannot deerease again until z ap-
proaches either the X, or X; curve Whi(ﬁl corresponds.

Finally near x= -1 the term bkx cos (At+a) dom-
inates except when M-« is near nx-+1/2x. The dips
of X, towards 2=1 and crests of X, toward z=——1
do in fact occur in these intervals, and a complete
theory of the behavior of solutions near these points
is very complicated. However, in spite of that we

can now form a fairly good general picture of the
behavior of solutions. They settle above z=1 into
a long descent in waves of the form x=X; (£,0) ap-
proximately, dipping a little lower each time until
they reach the neighborhood of #=1. There the
have three alternatives: (1) another wave z=2X;
just above z=1, (2} an unstable wave z=X, just
below x=1, or (3) a rush down to the corresponding
X, which, as may be seen from figure 1, iz near
2=—2. The stable oscillations naturally follow
the first or third alternative, and have period
(@n—+1)2x/» or (2n—1)2x/* according as they have
n+1/2 or n—1/2 waves sbove z=1. Separating
them there are many types of unstable motion fol-
lowing an X, eurve which begins and ends on =1 for
part or the whole of the way (or a similar X, curve
after a long ascent near z=—1). From an X; curve
they may pull up sharply to X, or rush down to X;
at any stage. All types starting near z=1 finally
plunge doewn to the X; eurve, and perform a cor-
responding long ascent to x=—1, the whole pheno-
menon for 2<0 corresponding to that for z>0. All
this can be rigorously established, and moreover the
relative positions of solutions approximating to
X;(t,C) and X3({,(,) remain the same throughout a
long descent unless ¢, and ¢, differ by something
which is extremely small for large k, such as =",

Weo now return to the proof of theorem 1. The
preceding analysis depended to a Iarge extent on the
fact that 1—2® changes sign twice; in the work which
follows the significant point is that the coeflicient
of x is positive for large = end that the function g(z)
in (2) has the sign of z. Physicists may congider
1t intuitive that a system with a restoring force and
positive damping for large & should have bounded
golutions, and I hope to show that this iz also intui-
tive by mathematical commonsense. Inecidentally
the lemmas give a good deal of other information
about the solutions. I shall as usual refer to ¢ as
the time, and say that ¢, is before or after #, according
as h<( or {, >f;. 'The constants B are independent
of & and ¢, and are not necessarily the same in each
place unless a suffix is attached, and, as we said
earlier £ >1,

We first ensure that all solutions eventually come
fairly near z=0.

Lemma 1. A solufion of (I) cannof have absolule
value greater than 3% for all large 1.

.Suppose that this is not so, and that x> 3% for 2 4;.
Integrating from ¢ where x=u,, i=4%,, we have

¢—¢1+k(§—x—“3i|-zl)+ﬁ‘xdt=bk[sm (M+a)—sinal,
1
and so ’ -

3%(—1,) Sﬁixdtz ~a’:+kx'(1 —3:3—2)+O(1)

as ¢ », where the constant implied depends on k.
The lefthand side tends to o, and so ¥—— =, but
this implies that #—>— =, which contradicts x> 3%.
Hence x<3% for arbitrarily large f, and similarly
2> —3* for some large £.
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‘We next establish that as long as }a| is not too large
the value of |#| cannot increase too much.

Lemma 2. If |2[<3% on an arc PQ, then
|| <|2p|+ Bik,

and, if the arc lasts a time longer than 4/k <4,|34| <2.
More generally if |2|<b, on an are PQ, then

J#g| < |&p| -+ Bil(by)k.

If |2j<3% and £>>k on an arc, it can only last a
time 8t most 2.3% /k<4/k. For if it lasts longer, the
solution travels a distance more than 2.3% and there-
fore cannot remain in the strip. The same is true if
#<7—k on an arc in|z| < 3%, :

Let P, be the last point before ¢ at which |&] <k,
or P itself, whichever is the latest. Suppose first
that 2 >>0, then 27>0 on the arc P,@. For, if not,

#=0 at some point of P\ and P, is not the last point
at which |# <k. By the integrated equation, since

JI'Q|<3%,-|$P!| <3%!
4
:i:q—o:-plsBlk——ﬁ 2dt< Bik,
1

where B,>1 depends on b, which gives the result.
Similarly if #p <O, wehave p —2q< Bik. Ifthetime
is greater than 4%,[ts | <k, and we have the second

form of the result. The result for |2| <3, follows by
the same method.

The next two lemmas show that the height of an
arc @R outside the strip |z[< 3%, and the time taken
to describe it are bounded by numbers depending on
#g; in other words the velocity with which it cmerges
from the strip.

Lemma 3. If the arc QR lies above =38 and
begins at @ on x=23%, the greatest height h satisfies

h<%+}j’,.

When a=h=3%+h,£=0. Integrating from the
point @ to the point H at which =4, we have

L NN
0=:;:-a._kf!,é “er—1)de
3

_ ﬁ " odt+ b [sin (\-+a)—sin al.

Since #*—12>2 on @R,
0< dq— 2hch, Bk

and the result follows for &, and so for A.

Lemma 4. If QR is an arc above x=3% beginning
at @ on x=3%, then the time { taken to describe QR s
less than Bgig, provided thal #,>k.

Suppose that &>k, and that B is on z=38%* so
that 2g=2z—23%. On QR it is eagy to see that

i<¢q+3k~_f' sdt

< Big—3%¢
because $o>k. Also

i 3%
O=zxp— .'L'sz Idt<Bﬂ?gt——2— 28
]

and so t<Byi,. ] ]
The reduction in energy over any sufficiently high

arc is established in lemma 5 which gives effect to

the remarks we made about (4'). It is much the

most difficult part of the proof. L
Lemms 5. If QR is an arc above x=3% beginning

at @ on x=3% and ending at R on 2==3%, for a given

B,>1 there exists @ B,>> By > 1 such that if &q>>B.k,

#<i5—4Bki,.

The energy eq 4 for the arc QF is

[
:ez—fg:—zkf’ (x’~1):i:2dt+2bk)\f & sin (\+ ).
Let

»

* [
J= kJ e D> kf 2dt. )
: a ]
Then

BB < —2J+2bmf (& ds
<—2J+BitA( f’ la‘:l”dt)%

by Cauchy’s inequality. So by lemma 4 and (8)
B8 < — 2+ Bk

<—2o1-3m ()]
L —J <~ Bikio,

provided that J > Biki,, where B; depends on B; and
#o>>k. We may obviously choose Bi>>4B), and we
have the result except for the case in which
JL Bk,

Suppose now that J< B ki, and integrate from

@ until ;i:=—;- e or x=28%13% whichever comes

first. Then &> %:i:o> 0. Hence z is increasing on

this are and
sin (m%)::;d::fx sin (-4 a)dx<f” dz<2B:.
0 3k 3k

4
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Hence
I T
i:‘—:bz=—2kj; (xz—l):f:’dt—kb)\ﬁ sin (M-+a)dz—B

>_2J—kBB:—B
> —2kBite— kB> — 543,
provided that #>>kB,. It follows that > %a’% and

therefore &> %:i:q, so that z reaches 25+ 3% first.
Now since 22— 122 on the arc,

- 2B3-+3%
J_:Z?,kf” [&|dx > kiq - 2B,
3

and we have a contradiction. Hence the result of
the lemma is true.

}it remains to combine the results of lemmas 2
and 3.

Lemma 6. If @ is a point on x=3% such that
G > Bk >0, then the solution refurns to the strip
|x|§3’* at B and emerges again at S with |ig]<|%q|
— B

By lemma 2 with R and § in place of P and @
[£g|2<|Ep|2+ 2 Bik|dg| + B2k2.
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FiGUure 3.

Using lemma 5 in the form stated and also in the
weaker form |Zg}<|#q|, we have

ls|?< |£q|?— 4 Bik|do| + 2 Bok ||+ B2k
= (|x‘?i - Blk)zy

From which the result follows. For i¢>> Bk > Bik.

We now have the result stated in theorem1. For
by lemma 1 the solution must enter the stri
|#{< 3%, and by the second part of lemma 2 |£| < Bk,
if it stays there. If on the other hand it emerges
at @ with |#g)<B.k, the height (or depth) of the
subsequent arc outside the strip is less than B,+ B,.
For by symmetry all the lemnmas for z— >3%* have
strictly corresponding forms for &< —3%. But by
lemma 6 if i[> Bk, the solution emerges the next
time at S with |&s|<|tg|— Bik, so that it must either
stay in the strip or emerge eventusally with &) < Bk,
and then by the second part of lemma 2, |z|<B,+ B,
for all subsequent &.

f—
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.

Figure 4.
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'Fiaure 5.
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